Data lakes are huge collections of data, ranging from raw data that has not been organised or processed, through to varying levels of curated data sets. One of their benefits from an analytics purpose is that the varying types of consumers can access appropriate data for their needs.

 

This makes it perfect for some of the newer use cases such as Data Science, AI and machine learning, which are viewed by many companies as the future of analytics work. It is a great way to store masses of raw data on scalable storage solutions without attempting traditional ETL or ELT (extract, transform, load), which can be expensive at this volume.

Read the full article here.

Related Post